

DNA Test Report

Test Date: September 8th, 2023

embk.me/anduincalypso

BREED ANCESTRY

Poodle (Standard) : 100.0%

GENETIC STATS

Predicted adult weight: **58 lbs** Life stage: **Young adult** Based on your dog's date of birth provided.

TEST DETAILS

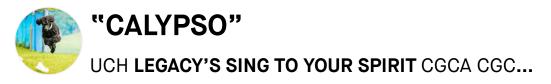
Kit number: EM-57086610 Swab number: 31220611904231

"CALYPSO"

UCH LEGACY'S SING TO YOUR SPIRIT CGCA CGC ...

DNA Test Report

Test Date: September 8th, 2023


embk.me/anduincalypso

POODLE (STANDARD)

The Standard Poodle is a popular, water-loving dog used for centuries as a bird dog and popular pet. Poodles were established in Germany by the 15th century. Oddly enough, they are the national dog breed of France, and they were the most popular breed of dog in the United States throughout the 1960s and 70s. They're still quite popular today, owing to their intelligence, trainability, and non-shedding coats. Although well-known for their fancy fur, they're one of the most intelligent breeds of dog and require a lot of exercise and stimulation.

Fun Fact

From 1989 to 1991, John Suter raced a team of Poodles in the Iditarod. Although his teams placed in the back half of the pack, he managed to win \$2,000 in prize money before retiring his poodle team. The Iditarod has since changed its rules to specify that only northern dog breeds can compete.

DNA Test Report

Test Date: September 8th, 2023

embk.me/anduincalypso

MATERNAL LINE

Through Calypso's mitochondrial DNA we can trace her mother's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

HAPLOGROUP: B1

B1 is the second most common maternal lineage in breeds of European or American origin. It is the female line of the majority of Golden Retrievers, Basset Hounds, and Shih Tzus, and about half of Beagles, Pekingese and Toy Poodles. This lineage is also somewhat common among village dogs that carry distinct ancestry from these breeds. We know this is a result of B1 dogs being common amongst the European dogs that their conquering owners brought around the world, because nowhere on earth is it a very common lineage in village dogs. It even enables us to trace the path of (human) colonization: Because most Bichons are B1 and Bichons are popular in Spanish culture, B1 is now fairly common among village dogs in Latin America.

HAPLOTYPE: B84

Part of the large B1 haplogroup, this haplotype occurs most frequently in Golden Retrievers, Beagles, and Staffordshire Terriers.

DNA Test Report

Test Date: September 8th, 2023

embk.me/anduincalypso

TRAITS: COAT COLOR

TRAIT

E Locus (MC1R)

The E Locus determines if and where a dog can produce dark (black or brown) hair. Dogs with two copies of the recessive **e** allele do not produce dark hairs at all, and will be "red" over their entire body. The shade of red, which can range from a deep copper to yellow/gold to cream, is dependent on other genetic factors including the Intensity loci. In addition to determining if a dog can develop dark hairs at all, the E Locus can give a dog a black "mask" or "widow's peak," unless the dog has overriding coat color genetic factors. Dogs with one or two copies of the **Em** allele usually have a melanistic mask (dark facial hair as commonly seen in the German Shepherd and Pug). Dogs with no copies of **Em** but one or two copies of the **Eg** allele usually have a melanistic "widow's peak" (dark forehead hair as commonly seen in the Afghan Hound and Borzoi, where it is called either "grizzle" or "domino").

K Locus (CBD103)

The K Locus K^B allele "overrides" the A Locus, meaning that it prevents the A Locus genotype from affecting coat color. For this reason, the K^B allele is referred to as the "dominant black" allele. As a result, dogs with at least one K^B allele will usually have solid black or brown coats (or red/cream coats if they are ee at the E Locus) regardless of their genotype at the A Locus, although several other genes could impact the dog's coat and cause other patterns, such as white spotting. Dogs with the $k^{y}k^{y}$ genotype will show a coat color pattern based on the genotype they have at the A Locus. Dogs who test as K^Bk^{y} may be brindle rather than black or brown.

More likely to have a mostly solid black or brown coat (K^Bk^y)

Can have a melanistic

mask (E^me)

RESULT

DNA Test Report

Test Date: September 8th, 2023

embk.me/anduincalypso

RESULT

TRAITS: COAT COLOR (CONTINUED)

TRAIT

Intensity Loci

Areas of a dog's coat where dark (black or brown) pigment is not expressed either contain red/yellow pigment, or no pigment at all. Five locations across five chromosomes explain approximately 70% of red pigmentation "intensity" variation across all dogs. Dogs with a result of **Intense Red Pigmentation** will likely have deep red hair like an Irish Setter or "apricot" hair like some Poodles, dogs with a result of **Intermediate Red Pigmentation** will likely have tan or yellow hair like a Soft-Coated Wheaten Terrier, and dogs with **Dilute Red Pigmentation** will likely have cream or white hair like a Samoyed. Because the mutations we test may not directly cause differences in red pigmentation intensity, we consider this to be a linkage test.

No impact on coat pattern (Intermediate Red Pigmentation)

A Locus (ASIP)

The A Locus controls switching between black and red pigment in hair cells, but it will only be expressed in dogs that are not **ee** at the E Locus and are **k**^y**k**^y at the K Locus. Sable (also called "Fawn") dogs have a mostly or entirely red coat with some interspersed black hairs. Agouti (also called "Wolf Sable") dogs have red hairs with black tips, mostly on their head and back. Black and tan dogs are mostly black or brown with lighter patches on their cheeks, eyebrows, chest, and legs. Recessive black dogs have solid-colored black or brown coats.

Not expressed (a^ya^t)

D Locus (MLPH)

The D locus result that we report is determined by three different genetic variants that can work together to cause diluted pigmentation. These are the common **d** allele, also known as "**d1**", and the less common alleles known as "**d2**" and "**d3**". Dogs with two **d** alleles, regardless of which variant, will have all black pigment lightened ("diluted") to gray, or brown pigment lightened to lighter brown in their hair, skin, and sometimes eyes. There are many breed-specific names for these dilute colors, such as "blue", "charcoal", "fawn", "silver", and "Isabella". Note that in certain breeds, dilute dogs have a higher incidence of Color Dilution Alopecia. Dogs with one **d** allele will not be dilute, but can pass the **d** allele on to their puppies.

Dark areas of hair and skin are not lightened (DD)

DNA Test Report

Test Date: September 8th, 2023

embk.me/anduincalypso

TRAITS: COAT COLOR (CONTINUED)

TRAIT RESULT Cocoa (HPS3) Dogs with the coco genotype will produce dark brown pigment instead of black in both their hair and skin. No co alleles, not Dogs with the **Nco** genotype will produce black pigment, but can pass the **co** allele on to their puppies. expressed (NN) Dogs that have the coco genotype as well as the bb genotype at the B locus are generally a lighter brown than dogs that have the **Bb** or **BB** genotypes at the B locus. **B Locus (TYRP1)** Dogs with two copies of the **b** allele produce brown pigment instead of black in both their hair and skin. Black or gray hair and Dogs with one copy of the **b** allele will produce black pigment, but can pass the **b** allele on to their puppies. skin (Bb) E Locus ee dogs that carry two b alleles will have red or cream coats, but have brown noses, eye rims, and footpads (sometimes referred to as "Dudley Nose" in Labrador Retrievers). "Liver" or "chocolate" is the preferred color term for brown in most breeds; in the Doberman Pinscher it is referred to as "red". Saddle Tan (RALY) The "Saddle Tan" pattern causes the black hairs to recede into a "saddle" shape on the back, leaving a tan face, legs, and belly, as a dog ages. The Saddle Tan pattern is characteristic of breeds like the Corgi, Not expressed (NI) Beagle, and German Shepherd. Dogs that have the II genotype at this locus are more likely to be mostly black with tan points on the eyebrows, muzzle, and legs as commonly seen in the Doberman Pinscher and the Rottweiler. This gene modifies the A Locus at allele, so dogs that do not express at are not influenced by this gene. S Locus (MITF) The S Locus determines white spotting and pigment distribution. MITF controls where pigment is

produced, and an insertion in the MITF gene causes a loss of pigment in the coat and skin, resulting in white hair and/or pink skin. Dogs with two copies of this variant will likely have breed-dependent white patterning, with a nearly white, parti, or piebald coat. Dogs with one copy of this variant will have more limited white spotting and may be considered flash, parti or piebald. This MITF variant does not explain all white spotting patterns in dogs and other variants are currently being researched. Some dogs may have small amounts of white on the paws, chest, face, or tail regardless of their S Locus genotype.

Likely solid colored, but may have small amounts of white (Ssp)

DNA Test Report

Test Date: September 8th, 2023

embk.me/anduincalypso

No merle alleles (mm)

RESULT

TRAITS: COAT COLOR (CONTINUED)

TRAIT

M Locus (PMEL)

Merle coat patterning is common to several dog breeds including the Australian Shepherd, Catahoula Leopard Dog, and Shetland Sheepdog, among many others. Merle arises from an unstable SINE insertion (which we term the "M*" allele) that disrupts activity of the pigmentary gene PMEL, leading to mottled or patchy coat color. Dogs with an **M*m** result are likely to be phenotypically merle or could be "nonexpressing" merle, meaning that the merle pattern is very subtle or not at all evident in their coat. Dogs with an **M*M*** result are likely to be phenotypically merle. Dogs with an **mm** result have no merle alleles and are unlikely to have a merle coat pattern.

Note that Embark does not currently distinguish between the recently described cryptic, atypical, atypical+, classic, and harlequin merle alleles. Our merle test only detects the presence, but not the length of the SINE insertion. We do not recommend making breeding decisions on this result alone. Please pursue further testing for allelic distinction prior to breeding decisions.

R Locus (USH2A)

The R Locus regulates the presence or absence of the roan coat color pattern. Partial duplication of the USH2A gene is strongly associated with this coat pattern. Dogs with at least one **R** allele will likely have roaning on otherwise uniformly unpigmented white areas. Roan appears in white areas controlled by the S Locus but not in other white or cream areas created by other loci, such as the E Locus with **ee** along with Dilute Red Pigmentation by I Locus (for example, in Samoyeds). Mechanisms for controlling the extent of roaning are currently unknown, and roaning can appear in a uniform or non-uniform pattern. Further, non-uniform roaning may appear as ticked, and not obviously roan. The roan pattern can appear with or without ticking.

Likely no impact on coat pattern (rr)

H Locus (Harlequin)

This pattern is recognized in Great Danes and causes dogs to have a white coat with patches of darker pigment. A dog with an **Hh** result will be harlequin if they are also **M*m** or **M*M*** at the M Locus and are not **ee** at the E locus. Dogs with a result of **hh** will not be harlequin. This trait is thought to be homozygous lethal; a living dog with an **HH** genotype has never been found.

No harlequin alleles (hh)

DNA Test Report

Test Date: September 8th, 2023

embk.me/anduincalypso

TRAITS: OTHER COAT TRAITS

TRAIT

Furnishings (RSPO2)

Dogs with one or two copies of the F allele have "furnishings": the mustache, beard, and eyebrows characteristic of breeds like the Schnauzer, Scottish Terrier, and Wire Haired Dachshund. A dog with two I alleles will not have furnishings, which is sometimes called an "improper coat" in breeds where furnishings are part of the breed standard. The mutation is a genetic insertion which we measure indirectly using a linkage test highly correlated with the insertion.

Likely furnished (mustache, beard, and/or eyebrows) (FF)

RESULT

DNA Test Report

Test Date: September 8th, 2023

embk.me/anduincalypso

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Coat Length (FGF5)

The FGF5 gene affects hair length in many species, including cats, dogs, mice, and humans. In dogs, an **Lh** allele confers a long, silky hair coat across many breeds, including Yorkshire Terriers, Cocker Spaniels, and Golden Retrievers, while the **Sh** allele causes a shorter coat, as seen in the Boxer or the American Staffordshire Terrier. In certain breeds, such as the Pembroke Welsh Corgi and French Bulldog, the long haircoat is described as "fluffy". The coat length determined by FGF5, as reported by us, is influenced by four genetic variants that work together to promote long hair.

The most common of these is the **Lh1** variant (G/T, CanFam3.1, chr32, g.4509367) and the less common ones are **Lh2** (C/T, CanFam3.1, chr32, g.4528639), **Lh3** (16bp deletion, CanFam3.1, chr32, g.4528616), and **Lh4** (GG insertion, CanFam3.1, chr32, g.4528621). The FGF5_Lh1 variant is found across many dog breeds. The less common alleles, FGF5_Lh2, have been found in the Akita, Samoyed, and Siberian Husky, FGF5_Lh3 have been found in the Eurasier, and FGF5_Lh4 have been found in the Afghan Hound, Eurasier, and French Bulldog.

The **Lh** alleles have a recessive mode of inheritance, meaning that two copies of the **Lh** alleles are required to have long hair. The presence of two Lh alleles at any of these FGF5 loci is expected to result in long hair. One copy each of **Lh1** and **Lh2** have been found in Samoyeds, one copy each of **Lh1** and **Lh3** have been found in Eurasiers, and one copy each of **Lh1** and **Lh4** have been found in the Afghan Hounds and Eurasiers.

Interestingly, the Lh3 variant, a 16 base pair deletion, encompasses the Lh4 variant (GG insertion). The presence of one or two copies of Lh3 influences the outcome at the Lh4 locus. When two copies of Lh3 are present, there will be no reportable result for the FGF5_Lh4 locus. With one copy of Lh3, Lh4 can have either one copy of the variant allele or the normal allele. The overall FGF5 result remains unaffected by this.

RESULT

Likely long coat (LhLh)

DNA Test Report

Test Date: September 8th, 2023

embk.me/anduincalypso

RESULT

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Shedding (MC5R)

Dogs with at least one copy of the ancestral C allele, like many Labradors and German Shepherd Dogs, areLikely light sheddingheavy or seasonal shedders, while those with two copies of the T allele, including many Boxers, Shih Tzus(CC)and Chihuahuas, tend to be lighter shedders. Dogs with furnished/wire-haired coats caused by RSPO2(the furnishings gene) tend to be low shedders regardless of their genotype at this gene.

Coat Texture (KRT71)

Dogs with a long coat and at least one copy of the **T** allele have a wavy or curly coat characteristic of Poodles and Bichon Frises. Dogs with two copies of the ancestral **C** allele are likely to have a straight coat, **Likely curly coat (TT)** but there are other factors that can cause a curly coat, for example if they at least one **F** allele for the Furnishings (RSPO2) gene then they are likely to have a curly coat. Dogs with short coats may carry one or two copies of the **T** allele but still have straight coats.

Hairlessness (FOXI3)

A duplication in the FOXI3 gene causes hairlessness over most of the body as well as changes in tooth
 shape and number. This mutation occurs in Peruvian Inca Orchid, Xoloitzcuintli (Mexican Hairless), and
 Chinese Crested (other hairless breeds have different mutations). Dogs with the NDup genotype are likely
 to be hairless while dogs with the NN genotype are likely to have a normal coat. The DupDup genotype has
 never been observed, suggesting that dogs with that genotype cannot survive to birth. Please note that
 this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Hairlessness (SGK3)

Hairlessness in the American Hairless Terrier arises from a mutation in the SGK3 gene. Dogs with the **DD** result are likely to be hairless. Dogs with the **ND** genotype will have a normal coat, but can pass the **D** variant on to their offspring.

Very unlikely to be hairless (NN)

DNA Test Report

Test Date: September 8th, 2023

embk.me/anduincalypso

RESULT

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Oculocutaneous Albinism Type 2 (SLC45A2)

Dogs with two copies **DD** of this deletion in the SLC45A2 gene have oculocutaneous albinism (OCA), also known as Doberman Z Factor Albinism, a recessive condition characterized by severely reduced or absent pigment in the eyes, skin, and hair. Affected dogs sometimes suffer from vision problems due to lack of eye pigment (which helps direct and absorb ambient light) and are prone to sunburn. Dogs with a single copy of the deletion **ND** will not be affected but can pass the mutation on to their offspring. This particular mutation can be traced back to a single white Doberman Pinscher born in 1976, and it has only been observed in dogs descended from this individual. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Likely not albino (NN)

DNA Test Report

Test Date: September 8th, 2023

embk.me/anduincalypso

Likely medium or long

muzzle (CC)

RESULT

TRAITS: OTHER BODY FEATURES

TRAIT

Muzzle Length (BMP3)

Dogs in medium-length muzzle (mesocephalic) breeds like Staffordshire Terriers and Labradors, and long muzzle (dolichocephalic) breeds like Whippet and Collie have one, or more commonly two, copies of the ancestral **C** allele. Dogs in many short-length muzzle (brachycephalic) breeds such as the English Bulldog, Pug, and Pekingese have two copies of the derived **A** allele. At least five different genes affect muzzle length in dogs, with BMP3 being the only one with a known causal mutation. For example, the skull shape of some breeds, including the dolichocephalic Scottish Terrier or the brachycephalic Japanese Chin, appear to be caused by other genes. Thus, dogs may have short or long muzzles due to other genetic factors that are not yet known to science.

Tail Length (T)

Whereas most dogs have two **C** alleles and a long tail, dogs with one **G** allele are likely to have a bobtail, which is an unusually short or absent tail. This mutation causes natural bobtail in many breeds including the Pembroke Welsh Corgi, the Australian Shepherd, and the Brittany Spaniel. Dogs with **GG** genotypes have not been observed, suggesting that dogs with the **GG** genotype do not survive to birth. Please note that this mutation does not explain every natural bobtail! While certain lineages of Boston Terrier, English Bulldog, Rottweiler, Miniature Schnauzer, Cavalier King Charles Spaniel, and Parson Russell Terrier, and Dobermans are born with a natural bobtail, these breeds do not have this mutation. This suggests that other unknown genetic mutations can also lead to a natural bobtail.

Hind Dewclaws (LMBR1)

Common in certain breeds such as the Saint Bernard, hind dewclaws are extra, nonfunctional digits located midway between a dog's paw and hock. Dogs with at least one copy of the **T** allele have about a 50% chance of having hind dewclaws. Note that other (currently unknown to science) mutations can also cause hind dewclaws, so some **CC** or **TC** dogs will have hind dewclaws.

Unlikely to have hind dew claws (CC)

Likely normal-length

tail (CC)

DNA Test Report

Test Date: September 8th, 2023

embk.me/anduincalypso

RESULT

TRAITS: OTHER BODY FEATURES (CONTINUED)

TRAIT

Blue Eye Color (ALX4)

Embark researchers discovered this large duplication associated with blue eyes in Arctic breeds like Siberian Husky as well as tri-colored (non-merle) Australian Shepherds. Dogs with at least one copy of the duplication (**Dup**) are more likely to have at least one blue eye. Some dogs with the duplication may have only one blue eye (complete heterochromia) or may not have blue eyes at all; nevertheless, they can still pass the duplication and the trait to their offspring. **NN** dogs do not carry this duplication, but may have blue eyes due to other factors, such as merle. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Back Muscling & Bulk, Large Breed (ACSL4)

The **T** allele is associated with heavy muscling along the back and trunk in characteristically "bulky" largebreed dogs including the Saint Bernard, Bernese Mountain Dog, Greater Swiss Mountain Dog, and Rottweiler. The "bulky" **T** allele is absent from leaner shaped large breed dogs like the Great Dane, Irish Wolfhound, and Scottish Deerhound, which are fixed for the ancestral **C** allele. Note that this mutation does not seem to affect muscling in small or even mid-sized dog breeds with notable back muscling, including the American Staffordshire Terrier, Boston Terrier, and the English Bulldog.

Likely normal muscling (CC)

Less likely to have blue

eyes (NN)

Registration:

DNA Test Report Test Date: September 8th, 2023 embk.me/anduincalypso TRAITS: BODY SIZE TRAIT RESULT Body Size (IGF1) Larger (NN) The I allele is associated with smaller body size. Body Size (IGFR1) Larger (GG) The A allele is associated with smaller body size. Body Size (STC2) Larger (TT) The A allele is associated with smaller body size. Body Size (GHR - E191K) Larger (GG) The A allele is associated with smaller body size. Body Size (GHR - P177L) Larger (CC) The **T** allele is associated with smaller body size.

DNA Test Report	Test Date: September 8th, 2023	embk.me/anduincalypso
TRAITS: PERFORMANC	CE	
TRAIT		RESULT
Altitude Adaptation (EPAS1)		
found at high elevations. Dogs with	specially tolerant of low oxygen environments (hypoxia), such as those n at least one A allele are less susceptible to "altitude sickness." This n breeds from high altitude areas such as the Tibetan Mastiff.	Normal altitude tolerance (GG)
Appetite (POMC)		
dogs with no copies of the mutatio likely to have high food motivation, percentage, and be more prone to	found primarily in Labrador and Flat Coated Retrievers. Compared to on (NN), dogs with one (ND) or two (DD) copies of the mutation are more , which can cause them to eat excessively, have higher body fat obesity. Read more about the genetics of POMC, and learn how you can post (https://embarkvet.com/resources/blog/pomc-dogs/). We e test.	Normal food motivation (NN)

"CALYPSO"

UCH LEGACY'S SING TO YOUR SPIRIT CGCA CGC...

DNA Test Report

Test Date: September 8th, 2023

embk.me/anduincalypso

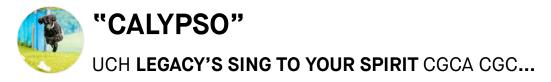
HEALTH REPORT

How to interpret Calypso's genetic health results:

If Calypso inherited any of the variants that we tested, they will be listed at the top of the Health Report section, along with a description of how to interpret this result. We also include all of the variants that we tested Calypso for that we did not detect the risk variant for.

A genetic test is not a diagnosis

This genetic test does not diagnose a disease. Please talk to your vet about your dog's genetic results, or if you think that your pet may have a health condition or disease.


Summary

Calypso is not at increased risk for the genetic health conditions that Embark tests.

Clear results

Breed-relevant (7)

Other (248)

DNA Test Report

Test Date: September 8th, 2023

embk.me/anduincalypso

BREED-RELEVANT RESULTS

Research studies indicate that these results are more relevant to dogs like Calypso, and may influence her chances of developing certain health conditions.

O Degenerative Myelopathy, DM (SOD1A)		Clear
GM2 Gangliosidosis (HEXB, Poodle Variant)		Clear
Intervertebral Disc Disease (Type I) (FGF4 retrogene - CFA	12)	Clear
Neonatal Encephalopathy with Seizures, NEWS (ATF2)		Clear
Osteochondrodysplasia (SLC13A1, Poodle Variant)		Clear
Progressive Retinal Atrophy, prcd (PRCD Exon 1)		Clear
Von Willebrand Disease Type I, Type I vWD (VWF)		Clear
Registration: American Kennel Club (AKC) PR26947604	≻ embark	Microchip: 95600001677842

	Toot	Doport	
DINA	rest	Report	

Test Date: September 8th, 2023

embk.me/anduincalypso

OTHER RESULTS

Research has not yet linked these conditions to dogs with similar breeds to Calypso. Review any increased risk or notable results to understand her potential risk and recommendations.

2-DHA Kidney & Bladder Stones (APRT)	Clear
Acral Mutilation Syndrome (GDNF-AS, Spaniel and Pointer Variant)	Clear
Alaskan Husky Encephalopathy (SLC19A3)	Clear
Alaskan Malamute Polyneuropathy, AMPN (NDRG1 SNP)	Clear
Alexander Disease (GFAP)	Clear
ALT Activity (GPT)	Clear
Anhidrotic Ectodermal Dysplasia (EDA Intron 8)	Clear
Autosomal Dominant Progressive Retinal Atrophy (RHO)	Clear
Bald Thigh Syndrome (IGFBP5)	Clear
Bernard-Soulier Syndrome, BSS (GP9, Cocker Spaniel Variant)	Clear
Bully Whippet Syndrome (MSTN)	Clear
Canine Elliptocytosis (SPTB Exon 30)	Clear
Canine Fucosidosis (FUCA1)	Clear
Canine Leukocyte Adhesion Deficiency Type I, CLAD I (ITGB2, Setter Variant)	Clear
Canine Leukocyte Adhesion Deficiency Type III, CLAD III (FERMT3, German Shepherd Variant)	Clear
Canine Multifocal Retinopathy, cmr1 (BEST1 Exon 2)	Clear
Canine Multifocal Retinopathy, cmr2 (BEST1 Exon 5, Coton de Tulear Variant)	Clear
Canine Multifocal Retinopathy, cmr3 (BEST1 Exon 10 Deletion, Finnish and Swedish Lapphund, Lapponian Herder Variant)	Clear

DNA Test Report	Test Date: September 8th, 2023	embk.me/anduincalypso
OTHER RESULTS		
O Canine Multiple System Degenera	ation (SERAC1 Exon 4, Chinese Crested Variant)	Clear
Canine Multiple System Degenera	ation (SERAC1 Exon 15, Kerry Blue Terrier Variant)	Clear
Cardiomyopathy and Juvenile Mo	rtality (YARS2)	Clear
Centronuclear Myopathy, CNM (P	TPLA)	Clear
Cerebellar Hypoplasia (VLDLR, Eu	ırasier Variant)	Clear
Chondrodystrophy (ITGA10, Norw	egian Elkhound and Karelian Bear Dog Variant)	Clear
Cleft Lip and/or Cleft Palate (ADA	MTS20, Nova Scotia Duck Tolling Retriever Variant)	Clear
Cleft Palate, CP1 (DLX6 intron 2, N	Nova Scotia Duck Tolling Retriever Variant)	Clear
Ocobalamin Malabsorption (CUBN	Exon 8, Beagle Variant)	Clear
Ocobalamin Malabsorption (CUBN	Exon 53, Border Collie Variant)	Clear
Collie Eye Anomaly (NHEJ1)		Clear
Omplement 3 Deficiency, C3 Def	ficiency (C3)	Clear
Ocongenital Cornification Disorder	r (NSDHL, Chihuahua Variant)	Clear
Ocongenital Hypothyroidism (TPO,	Rat, Toy, Hairless Terrier Variant)	Clear
Ocongenital Hypothyroidism (TPO,	Tenterfield Terrier Variant)	Clear
Congenital Hypothyroidism with 0	Goiter (TPO Intron 13, French Bulldog Variant)	Clear
Ocongenital Hypothyroidism with 0	Goiter (SLC5A5, Shih Tzu Variant)	Clear
Congenital Macrothrombocytope	nia (TUBB1 Exon 1, Cairn and Norfolk Terrier Variant)	Clear
Registration: American Kennel Club (AKC) PR26947604	Rembark	Microchip: 956000016

DNA Test Report	Test Date: September 8th, 2023	embk.me/anduincalypso
OTHER RESULTS		
Ocongenital Myasthenic Syndro	ome, CMS (COLQ, Labrador Retriever Variant)	Clear
Ocongenital Myasthenic Syndro	ome, CMS (COLQ, Golden Retriever Variant)	Clear
Ocongenital Myasthenic Syndro	ome, CMS (CHAT, Old Danish Pointing Dog Variant)	Clear
Ocongenital Myasthenic Syndro	ome, CMS (CHRNE, Jack Russell Terrier Variant)	Clear
Ocongenital Stationary Night Bl	lindness (LRIT3, Beagle Variant)	Clear
Ocongenital Stationary Night Bl	lindness (RPE65, Briard Variant)	Clear
Craniomandibular Osteopathy,	, CMO (SLC37A2)	Clear
Craniomandibular Osteopathy,	, CMO (SLC37A2 Intron 16, Basset Hound Variant)	Clear
Orstinuria Type I-A (SLC3A1, N	lewfoundland Variant)	Clear
O Cystinuria Type II-A (SLC3A1, A	Australian Cattle Dog Variant)	Clear
O Cystinuria Type II-B (SLC7A9, I	Miniature Pinscher Variant)	Clear
O Day Blindness (CNGB3 Deletic	on, Alaskan Malamute Variant)	Clear
Day Blindness (CNGA3 Exon 7,	German Shepherd Variant)	Clear
Day Blindness (CNGA3 Exon 7,	Labrador Retriever Variant)	Clear
Oay Blindness (CNGB3 Exon 6	, German Shorthaired Pointer Variant)	Clear
O Deafness and Vestibular Synd	rome of Dobermans, DVDob, DINGS (MYO7A)	Clear
O Demyelinating Polyneuropathy	y (SBF2/MTRM13)	Clear
O Dental-Skeletal-Retinal Anoma	aly (MIA3, Cane Corso Variant)	Clear
Registration: American Kennel Club (AKC) PR26947604	Rembark	Microchip: 956000016

DNA Test Report	Test Date: September 8th, 2023	embk.me/anduincalypso
OTHER RESULTS		
O Diffuse Cystic Renal Dysplasi	ia and Hepatic Fibrosis (INPP5E Intron 9, Norwich Terrier Variant)	Clear
Oilated Cardiomyopathy, DCN	M (RBM20, Schnauzer Variant)	Clear
Oilated Cardiomyopathy, DCN	M1 (PDK4, Doberman Pinscher Variant 1)	Clear
Oilated Cardiomyopathy, DCN	M2 (TTN, Doberman Pinscher Variant 2)	Clear
Oisproportionate Dwarfism (F	PRKG2, Dogo Argentino Variant)	Clear
Ory Eye Curly Coat Syndrome	∋ (FAM83H Exon 5)	Clear
Oystrophic Epidermolysis Bu	Illosa (COL7A1, Central Asian Shepherd Dog Variant)	Clear
Oystrophic Epidermolysis Bu	Illosa (COL7A1, Golden Retriever Variant)	Clear
Early Bilateral Deafness (LOX	(HD1 Exon 38, Rottweiler Variant)	Clear
Early Onset Adult Deafness, F	EOAD (EPS8L2 Deletion, Rhodesian Ridgeback Variant)	Clear
Early Onset Cerebellar Ataxia	a (SEL1L, Finnish Hound Variant)	Clear
Ehlers Danlos (ADAMTS2, Do	berman Pinscher Variant)	Clear
Enamel Hypoplasia (ENAM De	eletion, Italian Greyhound Variant)	Clear
Enamel Hypoplasia (ENAM SI	NP, Parson Russell Terrier Variant)	Clear
Episodic Falling Syndrome (E	3CAN)	Clear
Exercise-Induced Collapse, E	EIC (DNM1)	Clear
Factor VII Deficiency (F7 Exo	n 5)	Clear
Factor XI Deficiency (F11 Exo	on 7, Kerry Blue Terrier Variant)	Clear
Registration: American Kennel Club (AKC) PR26947604	Rembark	Microchip: 95600001

DNA Test Report	Test Date: September 8th, 2023	embk.me/anduincalypso
OTHER RESULTS		
Samilial Nephropathy (COL4A	44 Exon 3, Cocker Spaniel Variant)	Clear
Samilial Nephropathy (COL4A	44 Exon 30, English Springer Spaniel Variant)	Clear
Sanconi Syndrome (FAN1, Bas	senji Variant)	Clear
Setal-Onset Neonatal Neuroa	axonal Dystrophy (MFN2, Giant Schnauzer Variant)	Clear
🔗 Glanzmann's Thrombasthenia	a Type I (ITGA2B Exon 13, Great Pyrenees Variant)	Clear
🔗 Glanzmann's Thrombasthenia	a Type I (ITGA2B Exon 12, Otterhound Variant)	Clear
Globoid Cell Leukodystrophy,	r, Krabbe disease (GALC Exon 5, Terrier Variant)	Clear
🔗 Glycogen Storage Disease Ty	ype IA, Von Gierke Disease, GSD IA (G6PC, Maltese Variant)	Clear
Glycogen Storage Disease Ty	ype IIIA, GSD IIIA (AGL, Curly Coated Retriever Variant)	Clear
Glycogen storage disease Typ and English Springer Spaniel	vpe VII, Phosphofructokinase Deficiency, PFK Deficiency (PFKM, Whip I Variant)	opet Clear
Glycogen storage disease Typ Wachtelhund Variant)	vpe VII, Phosphofructokinase Deficiency, PFK Deficiency (PFKM,	Clear
🧭 GM1 Gangliosidosis (GLB1 Ex	kon 2, Portuguese Water Dog Variant)	Clear
GM1 Gangliosidosis (GLB1 Ex	on 15, Shiba Inu Variant)	Clear
🧭 GM1 Gangliosidosis (GLB1 Ex	kon 15, Alaskan Husky Variant)	Clear
GM2 Gangliosidosis (HEXA, Ja	apanese Chin Variant)	Clear
Golden Retriever Progressive	e Retinal Atrophy 1, GR-PRA1 (SLC4A3)	Clear
Golden Retriever Progressive	e Retinal Atrophy 2, GR-PRA2 (TTC8)	Clear
Goniodysgenesis and Glauco	oma, Pectinate Ligament Dysplasia, PLD (OLFM3)	Clear
Registration: American Kennel Club (AKC)	Fembark	Microchip: 956000016

Microchip: 95600001677842;

DNA Test Report	Test Date: September 8th, 2023	embk.me/anduincalypso
OTHER RESULTS		
Hemophilia A (F8 Exon 11, German Sheph	nerd Variant 1)	Clear
Hemophilia A (F8 Exon 1, German Shephe	erd Variant 2)	Clear
Hemophilia A (F8 Exon 10, Boxer Variant)		Clear
Hemophilia B (F9 Exon 7, Terrier Variant)		Clear
Hemophilia B (F9 Exon 7, Rhodesian Ridg	geback Variant)	Clear
Hereditary Ataxia, Cerebellar Degeneration	on (RAB24, Old English Sheepdog and Gordon Setter Variant	:) Clear
Hereditary Cataracts (HSF4 Exon 9, Austr	ralian Shepherd Variant)	Clear
Hereditary Footpad Hyperkeratosis (FAM	183G, Terrier and Kromfohrlander Variant)	Clear
Hereditary Footpad Hyperkeratosis (DSG	1, Rottweiler Variant)	Clear
Hereditary Nasal Parakeratosis (SUV39H	2 Intron 4, Greyhound Variant)	Clear
Hereditary Nasal Parakeratosis, HNPK (SI	UV39H2)	Clear
Hereditary Vitamin D-Resistant Rickets (VDR)	Clear
Hypocatalasia, Acatalasemia (CAT)		Clear
Hypomyelination and Tremors (FNIP2, We	eimaraner Variant)	Clear
Hypophosphatasia (ALPL Exon 9, Karelian	n Bear Dog Variant)	Clear
O Ichthyosis (NIPAL4, American Bulldog Va	iriant)	Clear
O Ichthyosis (ASPRV1 Exon 2, German She	pherd Variant)	Clear
O Ichthyosis (SLC27A4, Great Dane Variant)	Clear
Registration: American Kennel Club (AKC) PR26947604	H embark	Microchip: 956000016

PR26947604

DNA Test Report	Test Date: September 8th, 2023	embk.me/anduincalypso
OTHER RESULTS		
C Ichthyosis, Epidermolytic H	yperkeratosis (KRT10, Terrier Variant)	Clear
O Ichthyosis, ICH1 (PNPLA1, G	Golden Retriever Variant)	Clear
Inflammatory Myopathy (SL	C25A12)	Clear
Inherited Myopathy of Great	t Danes (BIN1)	Clear
O Inherited Selected Cobalam	nin Malabsorption with Proteinuria (CUBN, Komondor Variant)	Clear
O Intestinal Lipid Malabsorption	ion (ACSL5, Australian Kelpie)	Clear
Junctional Epidermolysis Bu	ullosa (LAMA3 Exon 66, Australian Cattle Dog Variant)	Clear
Junctional Epidermolysis Bu	ullosa (LAMB3 Exon 11, Australian Shepherd Variant)	Clear
Juvenile Epilepsy (LGI2)		Clear
Juvenile Laryngeal Paralysis	s and Polyneuropathy (RAB3GAP1, Rottweiler Variant)	Clear
Juvenile Myoclonic Epilepsy	y (DIRAS1)	Clear
C L-2-Hydroxyglutaricaciduria	a, L2HGA (L2HGDH, Staffordshire Bull Terrier Variant)	Clear
S Lagotto Storage Disease (A	TG4D)	Clear
🔗 Laryngeal Paralysis (RAPGE	F6, Miniature Bull Terrier Variant)	Clear
S Late Onset Spinocerebellar	Ataxia (CAPN1)	Clear
S Late-Onset Neuronal Ceroic	d Lipofuscinosis, NCL 12 (ATP13A2, Australian Cattle Dog Variant)	Clear
C Leonberger Polyneuropathy	y 1 (LPN1, ARHGEF10)	Clear
C Leonberger Polyneuropathy	y 2 (GJA9)	Clear
Registration: American Kennel Club (AKC)) Kembark	Microchip: 956000016

DNA Test Report	Test Date: September 8th, 2023	embk.me/anduincalypso
OTHER RESULTS		
Lethal Acrodermatitis, LAD (MKLN1)		Clear
Leukodystrophy (TSEN54 Exon 5, St.	andard Schnauzer Variant)	Clear
O Ligneous Membranitis, LM (PLG)		Clear
S Limb Girdle Muscular Dystrophy (SG	CD, Boston Terrier Variant)	Clear
S Limb-Girdle Muscular Dystrophy 2D	(SGCA Exon 3, Miniature Dachshund Variant)	Clear
O Long QT Syndrome (KCNQ1)		Clear
Sundehund Syndrome (LEPREL1)		Clear
Macular Corneal Dystrophy, MCD (Cl	HST6)	Clear
🔗 Malignant Hyperthermia (RYR1)		Clear
May-Hegglin Anomaly (MYH9)		Clear
Methemoglobinemia (CYB5R3, Pit B	ull Terrier Variant)	Clear
Methemoglobinemia (CYB5R3)		Clear
Microphthalmia (RBP4 Exon 2, Soft of	Coated Wheaten Terrier Variant)	Clear
Mucopolysaccharidosis IIIB, Sanfilip	ppo Syndrome Type B, MPS IIIB (NAGLU, Schipperke Variant)	Clear
 Mucopolysaccharidosis Type IIIA, Sa Variant) 	anfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6, Dachshu	nd Clear
 Mucopolysaccharidosis Type IIIA, Sa Huntaway Variant) 	anfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6, New Zea	land Clear
 Mucopolysaccharidosis Type VI, Ma Variant) 	roteaux-Lamy Syndrome, MPS VI (ARSB Exon 5, Miniature Pi	nscher Clear
Mucopolysaccharidosis Type VII, Sly	v Syndrome, MPS VII (GUSB Exon 3, German Shepherd Variar	nt) Clear

Microchip: 95600001677842;

PR26947604

DNA Test Report	Test Date: September 8th, 2023	embk.me/anduincalypso
OTHER RESULTS		
Mucopolysaccharidosis Typ	be VII, Sly Syndrome, MPS VII (GUSB Exon 5, Terrier Brasileiro Variant)	Clear
Multiple Drug Sensitivity (A	BCB1)	Clear
Muscular Dystrophy (DMD, 6	Cavalier King Charles Spaniel Variant 1)	Clear
Muscular Dystrophy (DMD, 6	Golden Retriever Variant)	Clear
🔗 Musladin-Lueke Syndrome,	MLS (ADAMTSL2)	Clear
🧭 Myasthenia Gravis-Like Syr	ndrome (CHRNE, Heideterrier Variant)	Clear
🧭 Myotonia Congenita (CLCN	1 Exon 23, Australian Cattle Dog Variant)	Clear
🔗 Myotonia Congenita (CLCN	1 Exon 7, Miniature Schnauzer Variant)	Clear
Narcolepsy (HCRTR2 Exon 1	1, Dachshund Variant)	Clear
Narcolepsy (HCRTR2 Intron	4, Doberman Pinscher Variant)	Clear
Narcolepsy (HCRTR2 Intron	6, Labrador Retriever Variant)	Clear
Nemaline Myopathy (NEB, A	American Bulldog Variant)	Clear
O Neonatal Cerebellar Cortica	al Degeneration (SPTBN2, Beagle Variant)	Clear
🔗 Neonatal Interstitial Lung D	isease (LAMP3)	Clear
Neuroaxonal Dystrophy, NAI	D (VPS11, Rottweiler Variant)	Clear
Neuroaxonal Dystrophy, NAI	D (TECPR2, Spanish Water Dog Variant)	Clear
Neuronal Ceroid Lipofuscine	osis 1, NCL 1 (PPT1 Exon 8, Dachshund Variant 1)	Clear
Neuronal Ceroid Lipofuscine	osis 10, NCL 10 (CTSD Exon 5, American Bulldog Variant)	Clear
Registration: American Kennel Club (AKC)) Kembark	Microchip: 95600001

DNA Test Report	Test Date: September 8th, 2023	embk.me/anduincalypso
OTHER RESULTS		
Neuronal Ceroid Lipofuscing	osis 2, NCL 2 (TPP1 Exon 4, Dachshund Variant 2)	Clear
Neuronal Ceroid Lipofuscing	osis 5, NCL 5 (CLN5 Exon 4 SNP, Border Collie Variant)	Clear
O Neuronal Ceroid Lipofuscino	osis 5, NCL 5 (CLN5 Exon 4 Deletion, Golden Retriever Variant)	Clear
O Neuronal Ceroid Lipofuscino	osis 6, NCL 6 (CLN6 Exon 7, Australian Shepherd Variant)	Clear
Neuronal Ceroid Lipofuscino	osis 7, NCL 7 (MFSD8, Chihuahua and Chinese Crested Variant)	Clear
Neuronal Ceroid Lipofuscino	osis 8, NCL 8 (CLN8, Australian Shepherd Variant)	Clear
Neuronal Ceroid Lipofuscino	osis 8, NCL 8 (CLN8 Exon 2, English Setter Variant)	Clear
Neuronal Ceroid Lipofuscino	osis 8, NCL 8 (CLN8 Insertion, Saluki Variant)	Clear
 Neuronal Ceroid Lipofuscino Variant) 	osis, Cerebellar Ataxia, NCL4A (ARSG Exon 2, American Staffordshire	e Terrier Clear
Oculocutaneous Albinism, O	DCA (SLC45A2 Exon 6, Bullmastiff Variant)	Clear
Oculocutaneous Albinism, O	DCA (SLC45A2, Small Breed Variant)	Clear
Oculoskeletal Dysplasia 2 (C	COL9A2, Samoyed Variant)	Clear
Osteogenesis Imperfecta (C	COL1A2, Beagle Variant)	Clear
Osteogenesis Imperfecta (S	SERPINH1, Dachshund Variant)	Clear
Osteogenesis Imperfecta (C	COL1A1, Golden Retriever Variant)	Clear
P2Y12 Receptor Platelet Dis	sorder (P2Y12)	Clear
🔗 Pachyonychia Congenita (Kl	(RT16, Dogue de Bordeaux Variant)	Clear
Paroxysmal Dyskinesia, PxD) (PIGN)	Clear
Registration: American Kennel Club (AKC)	embark	Microchip: 95600001

PR26947604

DNA Test Report	Test Date: September 8th, 2023	embk.me/anduincalypso
OTHER RESULTS		
Persistent Mullerian Duct Syn	idrome, PMDS (AMHR2)	Clear
Pituitary Dwarfism (POU1F1 In	ntron 4, Karelian Bear Dog Variant)	Clear
Platelet Factor X Receptor De	ficiency, Scott Syndrome (TMEM16F)	Clear
O Polycystic Kidney Disease, PK	(DPKD1)	Clear
Pompe's Disease (GAA, Finnis	sh and Swedish Lapphund, Lapponian Herder Variant)	Clear
Prekallikrein Deficiency (KLKE	31 Exon 8)	Clear
Primary Ciliary Dyskinesia, PC	CD (NME5, Alaskan Malamute Variant)	Clear
Primary Ciliary Dyskinesia, PC	CD (CCDC39 Exon 3, Old English Sheepdog Variant)	Clear
Primary Hyperoxaluria (AGXT)		Clear
Primary Lens Luxation (ADAM	TS17)	Clear
Primary Open Angle Glaucoma	a (ADAMTS17 Exon 11, Basset Fauve de Bretagne Variant)	Clear
Primary Open Angle Glaucoma	a (ADAMTS10 Exon 17, Beagle Variant)	Clear
Primary Open Angle Glaucoma	a (ADAMTS10 Exon 9, Norwegian Elkhound Variant)	Clear
 Primary Open Angle Glaucoma Variant) 	a and Primary Lens Luxation (ADAMTS17 Exon 2, Chinese Shar-Pei	Clear
Progressive Retinal Atrophy (SAG)	Clear
Progressive Retinal Atrophy (I	IFT122 Exon 26, Lapponian Herder Variant)	Clear
Progressive Retinal Atrophy, E	Bardet-Biedl Syndrome (BBS2 Exon 11, Shetland Sheepdog Variant)) Clear
Progressive Retinal Atrophy, C	CNGA (CNGA1 Exon 9)	Clear
Registration: American Kennel Club (AKC)	H embark	Microchip: 956000016

PR26947604

DNA Test Report	Test Date: September 8th, 2023	embk.me/anduincalypso
OTHER RESULTS		
Progressive Retinal Atrophy, crd1	(PDE6B, American Staffordshire Terrier Variant)	Clear
Progressive Retinal Atrophy, crd4	l/cord1 (RPGRIP1)	Clear
Progressive Retinal Atrophy, PRA	1 (CNGB1)	Clear
Progressive Retinal Atrophy, PRA	3 (FAM161A)	Clear
Progressive Retinal Atrophy, rcd1	(PDE6B Exon 21, Irish Setter Variant)	Clear
Progressive Retinal Atrophy, rcd3	3 (PDE6A)	Clear
Proportionate Dwarfism (GH1 Exo	on 5, Chihuahua Variant)	Clear
Protein Losing Nephropathy, PLN	(NPHS1)	Clear
Pyruvate Dehydrogenase Deficier	ncy (PDP1, Spaniel Variant)	Clear
Pyruvate Kinase Deficiency (PKLF)	R Exon 5, Basenji Variant)	Clear
Pyruvate Kinase Deficiency (PKLF)	R Exon 7, Beagle Variant)	Clear
Pyruvate Kinase Deficiency (PKLF	R Exon 10, Terrier Variant)	Clear
Pyruvate Kinase Deficiency (PKLF)	R Exon 7, Labrador Retriever Variant)	Clear
Pyruvate Kinase Deficiency (PKLF)	R Exon 7, Pug Variant)	Clear
Raine Syndrome (FAM20C)		Clear
Recurrent Inflammatory Pulmonar	ry Disease, RIPD (AKNA, Rough Collie Variant)	Clear
Renal Cystadenocarcinoma and N	Nodular Dermatofibrosis (FLCN Exon 7)	Clear
Retina Dysplasia and/or Optic Ne	erve Hypoplasia (SIX6 Exon 1, Golden Retriever Variant)	Clear
Registration: American Kennel Club (AKC) PR26947604	Kembark	Microchip: 956000016

PR26947604

DNA Test Report	Test Date: September 8th, 2023	embk.me/anduincalypso
OTHER RESULTS		
Sensory Neuropathy (FAM13	34B, Border Collie Variant)	Clear
Severe Combined Immunod	eficiency, SCID (PRKDC, Terrier Variant)	Clear
Severe Combined Immunod	eficiency, SCID (RAG1, Wetterhoun Variant)	Clear
Shaking Puppy Syndrome (F	PLP1, English Springer Spaniel Variant)	Clear
Shar-Pei Autoinflammatory I	Disease, SPAID, Shar-Pei Fever (MTBP)	Clear
Skeletal Dysplasia 2, SD2 (C	OL11A2, Labrador Retriever Variant)	Clear
Skin Fragility Syndrome (PK	P1, Chesapeake Bay Retriever Variant)	Clear
Spinocerebellar Ataxia (SCN	I8A, Alpine Dachsbracke Variant)	Clear
Spinocerebellar Ataxia with	Myokymia and/or Seizures (KCNJ10)	Clear
Spongy Degeneration with 0	Cerebellar Ataxia 1 (KCNJ10)	Clear
Spongy Degeneration with 0	Cerebellar Ataxia 2 (ATP1B2)	Clear
Stargardt Disease (ABCA4 E	xon 28, Labrador Retriever Variant)	Clear
Succinic Semialdehyde Deh	nydrogenase Deficiency (ALDH5A1 Exon 7, Saluki Variant)	Clear
O Thrombopathia (RASGRP1 E	xon 5, American Eskimo Dog Variant)	Clear
O Thrombopathia (RASGRP1 E	xon 5, Basset Hound Variant)	Clear
O Thrombopathia (RASGRP1 E	xon 8, Landseer Variant)	Clear
Trapped Neutrophil Syndron	ne, TNS (VPS13B)	Clear
Ollrich-like Congenital Musc	cular Dystrophy (COL6A3 Exon 10, Labrador Retriever Variant)	Clear
Registration: American Kennel Club (AKC)	Kembark	Microchip: 956000016

DNA Test Report	Test Date: September 8th, 2023	embk.me/anduincalypso
OTHER RESULTS		
O Ullrich-like Congenital Muscular Dystrophy	(COL6A1 Exon 3, Landseer Variant)	Clear
O Unilateral Deafness and Vestibular Syndrom	e (PTPRQ Exon 39, Doberman Pinscher)	Clear
O Urate Kidney & Bladder Stones (SLC2A9)		Clear
⊘ Von Willebrand Disease Type II, Type II vWD	(VWF, Pointer Variant)	Clear
⊘ Von Willebrand Disease Type III, Type III vW	D (VWF Exon 4, Terrier Variant)	Clear
O Von Willebrand Disease Type III, Type III vW	O (VWF Intron 16, Nederlandse Kooikerhondje Variant)	Clear
⊘ Von Willebrand Disease Type III, Type III vW	O (VWF Exon 7, Shetland Sheepdog Variant)	Clear
X-Linked Hereditary Nephropathy, XLHN (CC	L4A5 Exon 35, Samoyed Variant 2)	Clear
X-Linked Myotubular Myopathy (MTM1, Labr	ador Retriever Variant)	Clear
X-Linked Progressive Retinal Atrophy 1, XL-F	PRA1 (RPGR)	Clear
X-linked Severe Combined Immunodeficien	cy, X-SCID (IL2RG Exon 1, Basset Hound Variant)	Clear
X-linked Severe Combined Immunodeficien	cy, X-SCID (IL2RG, Corgi Variant)	Clear
⊘ Xanthine Urolithiasis (XDH, Mixed Breed Var	iant)	Clear
S-Mannosidosis (MANBA Exon 16, Mixed-Br	eed Variant)	Clear
Registration: American Kennel Club (AKC) PR26947604	Fembark	Microchip: 956000016

Registration: American Kennel Club

DNA Test Report

INBREEDING AND DIVERSITY

"CALYPSO"

CATEGORY

Coefficient Of Inbreeding

Our genetic COI measures the proportion of your dog's genome where the genes on the mother's side are identical by descent to those on the father's side.

UCH LEGACY'S SING TO YOUR SPIRIT CGCA CGC ...

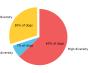
MHC Class II - DLA DRB1

A Dog Leukocyte Antigen (DLA) gene, DRB1 encodes a major histocompatibility complex (MHC) protein involved in the immune response. Some studies have shown associations between certain DRB1 haplotypes and autoimmune diseases such as Addison's disease (hypoadrenocorticism) in certain dog breeds, but these findings have yet to be scientifically validated.

MHC Class II - DLA DQA1 and DQB1

DQA1 and DQB1 are two tightly linked DLA genes that code for MHC proteins involved in the immune response. A number of studies have shown correlations of DQA-DQB1 haplotypes and certain autoimmune diseases; however, these have not yet been scientifically validated.

Your Dog's COI: 10%


No Diversity

10%

How common is this amount of diversity in purebreds:

How common is this amount of diversity in purebreds:

Test Date: September 8th, 2023

embk.me/anduincalypso

RESULT